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A B S T R A C T   

Three different global earth system models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) 
were used to explore anticipated changes in the Bering Sea under high (SSP126) and low (SSP585) carbon 
mitigation scenarios (i.e. low and high emission scenarios), via dynamical downscaling. A multivariate pattern 
analysis, based on Empirical Orthogonal Functions applied to monthly time series, reveals strong coupling of 
changes across several biophysical variables and the global forcing itself, on both yearly and multidecadal time 
scales. Rising air and ocean temperatures from the global models are strongly coupled with rising regional 
temperatures and reduced ice cover/thickness, as well as strong changes to the phenology of the plankton food 
chain, including reduced biomass of large zooplankton in the fall. This method ultimately provides a compact 
way to estimate the changes to many regional attributes under a variety of global change scenarios. Application 
of this method to a broad ensemble of the CMIP6 global model air temperatures suggests that compared to 
present conditions, the Bering Sea shelf bottom temperatures in July will warm by an average of ~4 degrees C by 
the end of the 21st century under SSP585, as compared with ~1 degrees C under SSP126, with greatest warming 
focused on the outer northern shelf.   

1. Introduction 

Widespread change is anticipated for the Bering Sea (AK) under 
climate change, including substantial oceanographic warming that 
scales with future carbon mitigation scenarios (IPCC 2013, 2014). 
Climate-driven changes to oceanographic conditions have the potential 
to propagate through the food web and impact fish and fisheries in the 
region (Holsman et al., 2018; Reum et al., 2020), with strong implica
tions for most effective management of these resources (e.g. Holsman 
et al., 2020; Hollowed et al., 2020). The Bering Sea is a highly produc
tive system that supports a wide diversity of species, some critically 
endangered, as well as multiple small coastal fishing communities that 
depend on subsistence harvest (Haynie and Huntington 2016) and 
large-scale commercial fisheries that annually represent more than 40% 
of the United States commercial landings (Fissel et al., 2017). In this 
paper, we report estimates of anticipated covarying changes to the 
physical and lower trophic level dynamics of the Bering Sea across 

space, time (by month), and variables, derived through the application 
of dynamical model downscaling to Coupled Model Intercomparison 
Project Phase 6 (CMIP6) global models, and subsequent Empirical 
Orthogonal Function (EOF)-based pattern analysis of the results. A 
direct description of downscaling results for individual model variables, 
as well as details of the global models used, can be found in a companion 
paper by Cheng et al. (2021, this volume; hereafter referred to as “C21”). 

1.1. Overview of the Bering Sea ecosystem 

Prominent physical features of the Bering Sea include seasonal ice 
cover, strong advection of ice, and tidally generated biophysical do
mains. Ice formed each winter in the northern Bering Sea is advected to 
the southeast, where it gradually melts as it encounters warmer water 
and air temperatures. This southward advection contributes to the lat
itudinal salinity gradient of the Bering Sea and its interannual vari
ability. A cross-shelf gradient in the vertical penetration of tidal mixing 
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sets up distinct biophysical regimes with associated biota. Classically, 
the southeastern shelf is classified as having three biophysical domains: 
a vertically well-mixed inner shelf domain (ocean depth is between ~0 
and 50m), a middle shelf domain (with ocean depth ~50–100m) which 
is well-mixed in the winter and has two distinct layers separated by a 
sharp thermocline in the summer, and an outer shelf domain (ocean 
depth ~100–200m) which is more gradually stratified (Kinder and 
Schumacher, 1981; Coachman, 1986; Kachel et al., 2002). A map of the 
region with these features identified is provided in Fig. 1. 

Distinct biological features of the Bering Sea ecosystem include ice 
algae as a potential food source to secondary producers, and strong 
benthic-pelagic coupling. Within the different biophysical regimes, the 
relative magnitude of pelagic vs. benthic pathways of carbon flux varies 
interannually, and is believed to be strongly influenced by the extent of 
seasonal ice through its effects on stratification (Hunt et al., 2002, 
2011). The relative importance of pelagic vs. benthic pathways is likely 
to shift under the influence of global warming, partially through its 
impact on seasonal ice extent in the Bering Sea. Field data suggest that 
cold temperatures in the Bering Sea lead to an increase in large crusta
cean zooplankton, favored as food items by juvenile pollock in the fall 

season (Coyle et al., 2011; Sigler et al., 2016). 
The present hydrography and seasonal ice-driven climatology of the 

Bering Sea result in a highly productive ecosystem, with plankton 
biomass ultimately supporting large populations of shellfish and finfish 
(and major fisheries), marine birds and marine mammals (Sigler et al., 
2016). Such intense production derives, in part, from a broad shelf with 
strong tidally-induced mixing, a plentiful supply of the micronutrient 
iron, and seasonal stratification, which maintains the phytoplankton in 
the euphotic zone, adjacent to a deep, macronutrient-rich basin. Inter
annual variation in winter ice extent over the Bering Sea modulates 
annual variability in productivity in system. A cold period in the Bering 
Sea from 2006 to 2011 (Stabeno et al., 2012) was followed by a return to 
warmer conditions, with reduced ice (Stabeno et al., 2016, 2017) and 
attendant changes in primary and secondary productivity (Sigler et al., 
2016). Recent years have included marked reductions in ice cover 
(Stabeno and Bell, 2019) and the lowest Bering sea ice extent in 5500 
years (Jones et al., 2020). 

In previous studies, model-based multivariate analysis was used to 
help explore the relationships between physical and biological factors on 
the Bering Sea shelf (Hermann et al. 2013, 2019). These analyses 

Fig. 1. Upper left panel: Domain and bathymetry of the regional model. Upper right panel: Bathymetry (m) with biophysical domains of the Bering Sea shelf. Orange 
= inner shelf domain (0–50m), yellow = middle shelf domain (50–100m), green = outer shelf domain (100–200m), blue = shelf break (200–1000m), purple = deep 
basin (>1000m). Lower center panel (from Cheng et al., 2021): Biophysical domains used to summarize spatial patterns; southern outer shelf (S1), southern middle 
shelf (S2), southern inner shelf (S3), northern outer shelf (N1), northern middle shelf (N2), and northern inner shelf (N3). 
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suggested that the Bering Sea shelf may not respond uniformly to 
changes in climate forcing. For example, large crustacean zooplankton 
(lcz) were negatively correlated with temperature on the outer, south
western shelf, but positively correlated to temperature on the inner, 
northeastern shelf. Areas of positive correlation tended to correspond 
with those areas with greatest change in ice cover. As in the revised 
Oscillating Control Hypothesis of Hunt et al. (2011), the ratio of large to 
total zooplankton was enhanced at lower temperatures. These results 
suggested that: 1) on the outer shelf, higher temperatures may be 
leading to reduced lcz production either through effects on stratification 
(and hence nutrient limitation), or through direct effects of temperature 
on growth, respiration, predation and vertical migration; 2) changes on 
the northern shelf may involve a complex interplay of light and nutrient 
limitation effects, as modulated by a reduction in the duration of sea
sonal ice cover. 

Ice dynamics of the Bering Sea have been explored in both obser
vational and modeling studies (Stabeno et al., 2010; Danielson et al., 
2011; Cheng et al., 2014; Li et al., 2014a, b; Sullivan et al., 2014, Jones 
et al., 2020). Ice is formed seasonally in the northern Bering Sea and is 
advected southward, resulting in a net transfer of fresh water from north 
to south. Heat budgets from these studies have underscored the impor
tance of sensible heat flux between the atmosphere and the ice in the 
northern Bering, and between the ocean surface and the ice in the 
southern Bering, where the ice edge retreats each spring. 

1.2. Contrast with previous downscaling studies 

In previous publications (Hermann 2013, 2016a), we projected 
future Bering Sea conditions to 2040 under an intermediate carbon 
mitigation scenario (i.e., A1B) from phase 3 of the Coupled Model 
Intercomparison (CMIP3; Meehl et al., 2007). In a more recent study 
(Hermann et al., 2019, henceforth referred to as “H19”) these were 
extended to 2100 and included a larger ensemble of global models under 
low mitigation (i.e. high emission, RCP 8.5) and moderate mitigation (i. 

e. moderate emission, RCP 4.5) scenarios from phase 5 of the CMIP 
(CMIP5; Taylor et al., 2012). Here, we focus on the latest set of global 
results (CMIP6) out to 2100 under two different Shared Socioeconomic 
Pathways (SSPs), specifically the low mitigation (high emission, 
SSP585) and high mitigation (low emission, SSP126) scenarios (O’Neill 
et al., 2016) using an extension of the multivariate methods described in 
H19. As described in C21, the CMIP5 and CMIP6 results differ in their 
equilibrium climate sensitivity (ECS), that is, their temperature response 
to increased greenhouse gases. Further, whereas the focus of H19 was on 
annually averaged change over the entire Bering Sea shelf and basin, 
here our focus is refined specifically to the Bering Sea shelf and the in
dividual months of each year. The multivariate approach, now applied 
to monthly rather than yearly anomalies, helps to elucidate changes that 
are coupled across different variables, including changes to the 
phenology of each variable within the larger biophysical system. As with 
the CMIP5-based results, these multivariate methods are used to statis
tically expand our 6-member dynamically downscaled ensemble to 
include all available CMIP6 global projections in a dynamically consis
tent manner. The revised, monthly-based method used now allows for 
any shifts in the phenology of the forcing itself to influence the monthly 
regional results. Output from these simulations will be used in fisheries 
models, both to project stocks and for management-strategy evaluation, 
as part of NOAA’s Alaska Climate Integrated Modeling Project (ACLIM; 
Hollowed et al., 2020). 

2. Methods 

2.1. The global earth system models 

Output from three different global Earth System Models (ESMs) were 
used in this study: 1) CESM version 2 with Community Atmospheric 
Model version 6 (CESM2-CAM6; Danabasoglu et al., 2020); 2) GFDL 
Earth System Model version 4.1 (GFDL-ESM4; Dunne et al., 2020); 3) 
MIROC-Earth System version 2 for Long-term simulations 

Fig. 2. Schematic of the BESTNPZ (from Kearney et al., 2020). State variable names are described in Table 1. Circular nodes represent state variables (gold indicates 
nutrient, green indicates producer, blue indicates consumer, brown indicates detritus). Edges (lines) represent fluxes between state variables and curve clockwise 
from source node to sink node. Edge colors indicate process type: green indicates primary production, blue indicates grazing and predation, brown indicates egestion, 
gold indicates respiration, red indicates remineralization, pink indicates nitrification, orange indicates non-predatory mortality, tan indicates excretion, purple in
dicates convective exchange, gray indicates sinking to seafloor, and navy indicates freezing/melting of ice. 

A.J. Hermann et al.                                                                                                                                                                                                                            



Deep-Sea Research Part II 194 (2021) 104974

4

(MIROC-ES2L; Hajima et al., 2020). These are hereafter referred to as 
“CESM”, “GFDL”, and “MIROC”, respectively. We focused on high 
(SSP126) and low (SSP585) carbon mitigation scenarios (“Shared So
cioeconomic Pathways”; O’Neill et al., 2016), and used output from both 
the “historical” period (specifically, 1980–2014) and future projections 
(2015–2100). As in H19, these models were chosen to span a range of 
possible futures by including a broad range of model structures and 
possible emission scenarios. A detailed description of these different 
models, and the rationale for their use in our study, is provided in the 
C21 companion manuscript. 

2.2. The regional downscaling model 

Major features of the regional model ("Bering10K") are as follows. 
The model is based on the Regional Ocean Modeling System (ROMS) 
version 3.2. ROMS is a terrain-following model with curvilinear hori
zontal coordinates; a description of basic features and implementation 
can be found in Haidvogel et al. (2008) and Shchepetkin and McWil
liams (2005). The Bering10K regional grid has approximately 10 km 
horizontal resolution, with 30 vertical levels (hereafter, K20), a signif
icant enhancement from the 10-layer version used in H19 (Kearney 
et al., 2020). This finer resolution better captures the evolution of 
stratification on the shelf, and the seasonal destruction of the summer 
mixed layer in particular. Fine-scale bathymetry is based on soundings 
from NOS, NOAA, and other sources as described in Danielson et al. 
(2011); smoothing of that bathymetry was utilized for numerical sta
bility. Any oceanic regions shallower than 10 m were set to be 10 m 
deep. Mixing is based on the algorithms of Large et al. (1994). Both ice 
(Budgell, 2005) and tidal dynamics are included in this model; the 
explicit inclusion of tidal flows allows tidally generated mixing and tidal 
residual flows to develop. Freshwater runoff was applied by freshening 
of the surface salinity field within a few grid points of the coastline, 
based on climatological monthly runoff values developed by Kearney 
(2019). Bulk forcing, based on algorithms of Large and Yeager (2008), 
were used to relate winds, air temperature, relative humidity, and 
downward shortwave and longwave radiation to surface stress and the 
net transfers of sensible heat, latent heat, net shortwave and net long
wave radiation through the sea surface. Further details of model tuning, 
implementation and biases are available in Hermann et al. (2016a) and 

Kearney et al. (2020). 
The lower trophic level dynamics (Nutrient-Phytoplankton- 

Zooplankton; NPZ) model was initially developed by Gibson and Spitz 
(2011) and was used in H19. The most recent version of this NPZ model 

Table 1 
State variables of the regional biological model.  

Variable Description Units 

NO3 nitrate mmol N 
m− 3 

NH4 ammonium mmol N 
m− 3 

PhS small phytoplankton (cells less than 10 μm diameter) mg C m− 3 

PhL large phytoplankton (bloom-forming diatoms) mg C m− 3 

MZL microzooplankton mg C m− 3 

Cop small-bodied copepods (e.g., Pseudocalanus spp.) mg C m− 3 

NCaS on-shelf large-bodied copepods (primarily Calanus 
marshallae) 

mg C m− 3 

EupS on-shelf euphausiids (primarily Thysanoessa raschii) mg C m− 3 

NCaO off-shelf large-bodied copepods (primarily Neocalanus 
spp.) 

mg C m− 3 

EupO off-shelf euphausiids (primarily Thysanoessa inermis) mg C m− 3 

Det slow-sinking detritus mg C m− 3 

DetF fast-sinking detritus mg C m− 3 

Jel jellyfish (Chrysaora melanaster) mg C m− 3 

Fe iron μmol Fe 
m− 3 

Ben benthic infauna (bivalves, amphipods, polychaetes, etc.) mg C m− 2 

DetBen benthic detritus mg C m− 2 

IcePhL ice algae mg C m− 3 

IceNO3 ice nitrate mmol N 
m− 3 

IceNH4 ice ammonium mmol N 
m− 3  

Table 2 
Properties used in the multivariate analysis. Variables in plain text are from the 
regional model, those in bold are boundary conditions from the global models, 
and those in bold italic are surface forcing from the global models.  

Jel_integrated Jellyfish concentration, integrated over 
depth 

mg C m− 2 

NCaS_surface5m On-shelf large copepod concentration, 
surface 5m mean 

mg C m− 3 

NCaO_surface5m Offshore large copepod concentration, 
surface 5m mean 

mg C m− 3 

EupS_integrated On-shelf euphausiid concentration, 
integrated over depth 

mg C m− 2 

EupO_integrated Offshore euphausiid concentration, 
integrated over depth 

mg C m− 2 

Cop_surface5m Small copepod concentration, surface 5m 
mean 

mg C m− 3 

MZL_surface5m Microzooplankton concentration, surface 5m 
mean 

mg C m− 3 

PhL_surface5m Large phytoplankton concentration, surface 
5m mean 

mg C m− 3 

PhS_surface5m Small phytoplankton concentration, surface 
5m mean 

mg C m− 3 

Iron_bottom5m iron concentration, bottom 5m mean micromol Fe 
m− 3 

Iron_surface5m iron concentration, surface 5m mean micromol Fe 
m− 3 

NH4_bottom5m Ammonium concentration, bottom 5m mean mmol N m− 3 

NH4_surface5m Ammonium concentration, surface 5m mean mmol N m− 3 

NO3_bottom5m Nitrate concentration, bottom 5m mean mmol N m− 3 

NO3_surface5m Nitrate concentration, surface 5m mean mmol N m− 3 

v_1 Along-shelf velocity, bottom layer m s− 1 

u_1 Cross-shelf velocity, bottom layer m s− 1 

v_30 Along-shelf velocity, top layer m s− 1 

u_30 Cross-shelf velocity, top layer m s− 1 

hice_30 average ice thickness in cell m 
aice_30 fraction of cell covered by ice (no units) 
salt_surface5m salinity, surface 5m mean psu 
temp_bottom5m potential temperature, bottom 5m mean Celsius 
temp_surface5m potential temperature, surface 5m mean Celsius 
v_south Along-shelf velocity at southeastern 

boundary, top layer 
m s− 1 

u_south Cross-shelf velocity at southeastern 
boundary, top layer 

m s− 1 

temp_south potential temperature at southeastern 
boundary, top layer 

Celsius 

salt_south Salinity at southeastern boundary, top layer psu 
no3_south Nitrate at southeastern boundary, top layer mmol N m− 3 

nh4_south Ammonium at southeastern boundary, top 
layer 

mmol N m− 3 

iron_south iron at southeastern boundary, top layer micromol Fe 
m− 3 

v_west Along-shelf velocity at southwestern 
boundary, top layer 

m s− 1 

u_west Cross-shelf velocity at southwestern 
boundary, top layer 

m s− 1 

temp_west potential temperature at southwestern 
boundary, top layer 

Celsius 

salt_west Salinity at southwestern boundary, top layer psu 
no3_west Nitrate at southwestern boundary, top layer mmol N m− 3 

nh4_west Ammonium at southwestern boundary, top 
layer 

mmol N m− 3 

iron_west iron at southwestern boundary, top layer micromol Fe 
m− 3 

Vwind_frc Northward wind from global model m s− 1 

Uwind_frc Eastward wind from global model m s− 1 

Tair_frc Air temperature from global model Celsius 
swrad_frc Shortwave radiation from global model Watts m− 2 

rain_frc Rainfall from global model m s− 2 

Qair_frc Absolute humidity from global model g g− 1 

Pair_frc Surface air pressure from global model Pa 
lwrad_down_frc Downwelling longwave radiation from global 

model 
Watts m− 2  
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(K20), used in the present study, was extensively documented, validated 
and examined for biases in Kearney et al. (2020), and is displayed in 
Fig. 2. Briefly, this model includes two size categories of phytoplankton 
(PhS, PhL) and ice plankton (IcePhL), and distinguishes among micro
zooplankton (MZL), small copepods (Cop), large copepods (NCaS, NCaO) 
and euphausiids (EupS, EupO), as well as jellyfish (Jel), benthic detritus 
(DetBen), and benthic infauna (Ben). Limiting nutrients are nitrate 
(NO3), ammonium (NH4) and dissolved iron (Fe). Metabolic and grazing 
rates are temperature dependent, which leads to substantially different 
food web structure under cold vs. warm conditions. A full list of bio
logical components is shown in Table 1; note that “onshore” and 
“offshore” categories of large zooplankton refer to slightly different 
species groupings with associated diet preferences and diapause 
behavior. Results from hindcasts and forecasts with an earlier version of 
this model are described in Hermann et al. (2013, 2016a) and Ortiz et al. 
(2016); projections using that previous version are described in H19. 
Hindcasts with the most recent version are compared with observations 
in Kearney et al. (2020). In addition to higher vertical resolution (30 
layers) this most recent version includes: 1) improved formulation for 
the role of chlorophyll, sediment, and organic matter on the attenuation 
of light as used for phytoplankton photosynthesis and water column 
distribution of surface heat fluxes, 2) correction of 
non-mass-conservative behavior within the biological module, 3) 
removal of macronutrient nudging except at the lateral boundaries, and 
4) adjustment of the euphausiid prey preferences to allow for detrital 
scavenging in winter. Kearney et al. (2020) includes a detailed 
description of the two versions. In both versions, light attenuation by 
sediment was a time-invariant function of local bathymetry (higher 
attenuation in shallow areas); in the present version, this function was 
explicitly calibrated using satellite (VIIRS) optical data. Most recently, 
carbonate dynamics have been added to this model (Pilcher et al., 2021, 
this volume). While the inclusion of carbonate variables was beyond the 
scope of our statistical analysis, many of the state variables from Table 1 
were utilized, sampled at specific layers or averaged over specific depths 
(Table 2). 

Atmospheric forcing of the regional model is derived from linear 
interpolation of daily global ESM results, for application to the bulk 
formulae of the regional model. Lateral open boundary conditions used 
the radiation plus nudging scheme of Marchesiello et al. (2001) for both 
physical and biological scalars, as well as baroclinic velocities. Inter
annually varying monthly velocities, temperature, salinity, sea surface 
height, nitrate, ammonium, and dissolved iron values were interpolated 
from the ESMs to all depths of the Bering10K boundaries; for the 
plankton state variables, zero values were used (internally, under inflow 
conditions, the model quickly spins up plankton from the provided nu
trients within a short distance from the boundary). For monthly coastal 
runoff, we modulated the monthly climatologies of Kearney et al. (2019) 
using the ratio of projected to present spatially averaged annual runoff 
(the latter being derived from the “historical” period of each global 
model), where the spatial average is taken over the Bering Sea plus 
Alaska (115-217oE and 44-71oN). Hence, for any future year, the 
calculated yearly runoff is a function of the projected yearly regional 
runoff from the ESM, but the presently observed phenology and spatial 
distribution of the runoff is retained from our regional model hindcasts 
(Kearney et al., 2020). 

Further details on the Bering10K model structure used here, as well 
as an extensive comparison of hindcast results with an extensive set of 
physical observations and biological observations, can be found in 
Kearney et al. (2020). The hindcast is driven by relatively coarse (>50 
km) large-scale atmospheric and oceanic reanalyses. Despite that rela
tively coarse forcing, the hindcast demonstrates considerable skill in 
capturing the observed seasonal climatology and interannual variability 
in patterns of ice cover and bottom temperature, the seasonal clima
tology of circulation, mixing, and stratification, and the mean seasonal 
cycle of primary production on the southeastern Bering Sea Shelf. Based 
on the available biological data, more limited skill was observed for 

domain-wide patterns of nutrient cycling, primary production and 
zooplankton community structure. Additional comparisons of hindcast 
results with available biophysical data for earlier versions of Bering10K 
are described in Hermann et al. (2013, 2016a, 2019). 

A comparison of downscaling results driven by forcing from the 
“historical” period of each ESM (1980–2014) with climatological ob
servations of sea-ice cover and bottom temperature is described in C21. 
In particular, this comparison demonstrates how each of the historical 
downscaling runs captures the observed pattern of mean sea-ice con
centrations in March (the month with the most extensive ice cover), and 
the observed pattern of bottom temperatures in July. Collectively these 
direct hindcast and ESM-based historical comparisons indicate that, 
despite remaining known and possible unknown biases (due to limited 
observations), the Bering10K model provides a useful framework to 
explore potential changes to the region driven by climate change. 

2.3. The statistical method 

In a previous publication centered on the downscaling of CMIP5 
projections (H19), we utilized a multivariate EOF analysis to ascertain 
coupled changes to annually averaged patterns of multiple variables 
over the entire Bering Sea shelf and basin. Here, for the CMIP6-based 
results, we restrict our spatial focus to the Bering Sea shelf (areas shal
lower than 200m, from the Aleutian Islands in the south to the Bering 
Strait in the north), but expand our focus to include each month of each 
year, using monthly averaged perturbations from the monthly clima
tologies of each downscaling model run. 

This multivariate analysis of CMIP6-based results is in many ways 
complementary to the univariate analyses of C21. While that work is 
focused on projected long-term changes of individual variables, the 
present work seeks to find any sets of interannual changes (including 
those spanning the earlier and later parts of the 21st century) which 
covary across variables and time-of-year; hence its emphasis is emergent 
behaviors of the entire biophysical system. As in H19, this approach has 
the added benefit of providing a compact statistical model of the 
downscaling model’s behavior, which can ultimately be used for 
compact downscaling of other global ESM results. The most significant 
differences with the methods of H19 are: 1) a focus on the Bering Sea 
shelf, rather than the entire basin; 2) a focus on individual months, 
rather than yearly averages. 

Our approach is related to what is sometimes termed “extended” or 
“combined” EOF analysis, and shares some features with the methods 
described by Thorson et al. (2020), as well as earlier studies of the Bering 
Sea and the Gulf of Alaska (Hermann et al. 2013, 2016b). Reviews of 
EOF-related methods can be found in Bretherton et al. (1992) and Pre
isendorfer (1988). Our method is perhaps most closely related to what is 
termed Canonical Correlation Analysis (CCA), but whereas CCA is 
typically applied to explore connections between two variable fields, 
here it is applied to a much larger set of variables. It is important to 
emphasize that EOF analysis deals with independent realizations of a 
collection of variables. In typical oceanographic usage of EOFs, these 
consist of time series of measured values of a single variable at multiple 
locations - each “realization” consists of the value at the same time at 
each of many locations. By contrast, in typical biological oceanographic 
usage of Principal Component (PC) analysis, each realization consists of 
a measurement of multiple variables at a particular location and time. In 
the present circumstance, we will use measurements of multiple vari
ables at a grid of locations on each month of the same calendar year. Our 
statistical technique then seeks out dominant patterns of correlation 
relating particular variables and months - for example nutrients in 
month p correlating with plankton in month q. For this analysis, each 
calendar year constitutes a single realization of that collection of 
measurements. 

The particular variables chosen for use in our statistical analysis 
include major physical and biological attributes of the system (Table 2); 
these are necessarily a subset of all possible variables from the forcing 
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and regional models. They are chosen to emphasize mean quantities 
near the ocean surface, where much of the primary production takes 
place, at the ocean bottom, of particular interest to fisheries in the 
Bering Sea, and in the case of larger zooplankton and jellyfish, inte
grated through the water column. They also include atmospheric forcing 
from the global models, as well as ocean surface quantities from the 
global models at the southeast and southwest boundaries of the regional 
model, where the ESMs provide the boundary conditions. Benthic cat
egories and carbonate variables were not included in the set; however, 
these will be explored in future studies. The surface and bottom ocean 
velocities used in this set are defined in the “native” coordinates of the 
ROMS grid, which is roughly oriented in “cross-shelf” and “along-shelf” 
directions. 

For the EOF analysis we utilize all six dynamically downscaling runs 
of the Bering10K model, spanning three different global model types 
(CESM, GFDL, and MIROC) and two different Shared Socioeconomic 
Pathways (SSP126 and SSP585) over years 85 years (2015–2099). These 
models are described in the companion paper C21. We first calculate the 
monthly average deviations from monthly climatology within each run 
separately; this results in six sets of perturbation time series for each of 
the ROMS grid points, ordered in time. These are binned into 50-km 
squares using the native ROMS grid. We then take all six sets of devia
tion time series and concatenate them together into one long 85 × 6 =
510 member set. In effect, each year of each model is considered to 
provide us with an independent sample of the multivariate collection for 

each of the twelve months of the year. These samples are used for the 
covariance analysis across variables and months - that is, the method 
seeks out what aspects of the system, including phenology, tend to occur 
together in any given year. 

As in H19, to expedite the multivariate analysis, we dimensionally 
reduce the spatial and temporal patterns of each single variable and 
month with univariate EOFs. The collection of time series (PCs) from 
this univariate analysis is then used to investigate covariance across 
variables and months, which can subsequently be used in prediction. 
The overall procedure can be summarized as:  

1) Using monthly anomaly time series from the dynamical downscaling 
(both the ESM forcing and the regional response), separately derive 
univariate EOFs for each variable and each month of the year. This 
yields a set of spatial loading patterns and modulating yearly time 
series for each variable/month combination.  

2) Scale each of the yearly time series according to the variance 
explained by the corresponding EOF. For each variable/month, 
retain only those time series corresponding to the ten leading EOF 
patterns (univariate_modes) for that particular variable/month.  

3) Apply Principal Component analysis to that scaled, reduced set of 
yearly time series. This yields a set of loadings for each variable/ 
month/univariate_mode, and a “master” set of yearly time series 

Table 3 
List of global model datasets for air temperature (Tair) used in statistical 
downscaling under SSP126 (see https://wcrp-cmip.github.io/CMIP6_CVs/doc 
s/CMIP6_source_id.html for model details regarding each model/realization).  

SSP126 

ACCESS-CM2_ssp126_r1i1p1f1_gn 
ACCESS-CM2_ssp126_r2i1p1f1_gn 
ACCESS-ESM1-5_ssp126_r1i1p1f1_gn 
ACCESS-ESM1-5_ssp126_r2i1p1f1_gn 
AWI-CM-1-1-MR_ssp126_r1i1p1f1_gn 
BCC-CSM2-MR_ssp126_r1i1p1f1_gn 
CAMS-CSM1-0_ssp126_r1i1p1f1_gn 
CAMS-CSM1-0_ssp126_r2i1p1f1_gn 
CanESM5_ssp126_r1i1p1f1_gn 
CanESM5_ssp126_r2i1p1f1_gn 
CAS-ESM2-0_ssp126_r1i1p1f1_gn 
CESM2-WACCM_ssp126_r1i1p1f1_gn 
CIESM_ssp126_r1i1p1f1_gr 
CMCC-CM2-SR5_ssp126_r1i1p1f1_gn 
CMCC-ESM2_ssp126_r1i1p1f1_gn 
CNRM-CM6-1-HR_ssp126_r1i1p1f2_gr 
CNRM-CM6-1_ssp126_r1i1p1f2_gr 
CNRM-ESM2-1_ssp126_r1i1p1f2_gr 
EC-Earth3_ssp126_r1i1p1f1_gr 
EC-Earth3-Veg-LR_ssp126_r1i1p1f1_gr 
EC-Earth3-Veg-LR_ssp126_r2i1p1f1_gr 
EC-Earth3-Veg_ssp126_r1i1p1f1_gr 
EC-Earth3-Veg_ssp126_r2i1p1f1_gr 
FGOALS-f3-L_ssp126_r1i1p1f1_gr 
FGOALS-g3_ssp126_r1i1p1f1_gn 
FGOALS-g3_ssp126_r2i1p1f1_gn 
GFDL-ESM4_ssp126_r1i1p1f1_gr1 
GISS-E2-1-G_ssp126_r1i1p1f2_gn 
IITM-ESM_ssp126_r1i1p1f1_gn 
KIOST-ESM_ssp126_r1i1p1f1_gr1 
MCM-UA-1-0_ssp126_r1i1p1f2_gn 
MIROC-ES2L_ssp126_r1i1p1f2_gn 
MPI-ESM1-2-HR_ssp126_r1i1p1f1_gn 
MPI-ESM1-2-HR_ssp126_r2i1p1f1_gn 
MRI-ESM2-0_ssp126_r1i1p1f1_gn 
NESM3_ssp126_r1i1p1f1_gn 
NESM3_ssp126_r2i1p1f1_gn 
NorESM2-LM_ssp126_r1i1p1f1_gn 
NorESM2-MM_ssp126_r1i1p1f1_gn 
TaiESM1_ssp126_r1i1p1f1_gn 
UKESM1-0-LL_ssp126_r1i1p1f2_gn  

Table 4 
List of global model datasets for air temperature (Tair) used in statistical 
downscaling under SSP585 (see https://wcrp-cmip.github.io/CMIP6_CVs/doc 
s/CMIP6_source_id.html for model details regarding each model/realization).  

SSP585 

ACCESS-CM2_ssp585_r1i1p1f1_gn 
ACCESS-CM2_ssp585_r2i1p1f1_gn 
ACCESS-ESM1-5_ssp585_r1i1p1f1_gn 
ACCESS-ESM1-5_ssp585_r2i1p1f1_gn 
AWI-CM-1-1-MR_ssp585_r1i1p1f1_gn 
BCC-CSM2-MR_ssp585_r1i1p1f1_gn 
CAMS-CSM1-0_ssp585_r1i1p1f1_gn 
CAMS-CSM1-0_ssp585_r2i1p1f1_gn 
CanESM5_ssp585_r1i1p1f1_gn 
CanESM5_ssp585_r2i1p1f1_gn 
CAS-ESM2-0_ssp585_r1i1p1f1_gn 
CESM2-WACCM_ssp585_r1i1p1f1_gn 
CESM2-WACCM_ssp585_r2i1p1f1_gn 
CIESM_ssp585_r1i1p1f1_gr 
CMCC-CM2-SR5_ssp585_r1i1p1f1_gn 
CMCC-ESM2_ssp585_r1i1p1f1_gn 
CNRM-CM6-1-HR_ssp585_r1i1p1f2_gr 
CNRM-CM6-1_ssp585_r1i1p1f2_gr 
CNRM-ESM2-1_ssp585_r1i1p1f2_gr 
EC-Earth3_ssp585_r1i1p1f1_gr 
EC-Earth3-Veg-LR_ssp585_r1i1p1f1_gr 
EC-Earth3-Veg-LR_ssp585_r2i1p1f1_gr 
EC-Earth3-Veg_ssp585_r1i1p1f1_gr 
EC-Earth3-Veg_ssp585_r2i1p1f1_gr 
FGOALS-f3-L_ssp585_r1i1p1f1_gr 
FGOALS-g3_ssp585_r1i1p1f1_gn 
FGOALS-g3_ssp585_r2i1p1f1_gn 
GFDL-ESM4_ssp585_r1i1p1f1_gr1 
GISS-E2-1-G_ssp585_r1i1p1f2_gn 
IITM-ESM_ssp585_r1i1p1f1_gn 
KIOST-ESM_ssp585_r1i1p1f1_gr1 
MCM-UA-1-0_ssp585_r1i1p1f2_gn 
MIROC-ES2L_ssp585_r1i1p1f2_gn 
MPI-ESM1-2-HR_ssp585_r1i1p1f1_gn 
MPI-ESM1-2-HR_ssp585_r2i1p1f1_gn 
MRI-ESM2-0_ssp585_r1i1p1f1_gn 
NESM3_ssp585_r1i1p1f1_gn 
NESM3_ssp585_r2i1p1f1_gn 
NorESM2-LM_ssp585_r1i1p1f1_gn 
NorESM2-MM_ssp585_r1i1p1f1_gn 
TaiESM1_ssp585_r1i1p1f1_gn 
UKESM1-0-LL_ssp585_r1i1p1f2_gn  
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(Principal Components with annual values) which modulate those 
multivariate loadings through time.  

4) For each variable/month, derive the spatial patterns (multivariate 
spatial modes) corresponding to that “master” set of yearly time 
series.  

5) Project additional sets of ESM forcing onto the multivariate spatial 
modes corresponding to that forcing variable and month, in order to 
predict the monthly anomalies that would have been obtained if such 
forcing had been dynamically applied to the regional model. 

We now present a more detailed motivation and description of the 
procedure. A priori we know that the mean spatial patterns of a single 

variable are substantially different in each month (for example, the 
seasonal evolution and destruction of the "cold pool" in the Bering Sea), 
and we could attempt to remove this “primary” known signal by looking 
at a continuous series of deviations from the monthly climatology. This 
is in fact commonly done in univariate EOF of the ocean; the underlying 
assumption is that the deviations are normally distributed about the 
monthly climatology. However, for biological variables especially (and 
for some physical variables as well), the monthly climatology includes 
strong shifts in space from one month to the next (for example, a 
phytoplankton bloom which migrates across the shelf, or the seasonal 
progression of the Bering Sea cold pool). As a result, the spatial patterns 
of deviations from monthly climatology will themselves vary month by 

Fig. 3. Leading two multivariate modes M of within-year covariability among the topmost univariate EOFs of selected biophysical variables (ordinate) for each 
month of the year (abcissa). A positive/negative sign denotes the positive/negative correlation among spatial patterns; each spatial pattern has a positive spatial 
mean. See Table 2 for variable descriptions. 
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month in a systematic fashion, and this complex spatial migration would 
be difficult to capture with a few spatial modes if we used continuous 
time series of month-by-month perturbations. A more effective way to 
capture the interannual variability of the system is to treat each month 
and variable as a separate multiyear time series. A matrix notation for 
this EOF decomposition is as follows:  

Ukl
ij = Xkn

ij*Tnl
ij                                                                            (1) 

where we have used subscripts to indicate the row and column di
mensions of each matrix, and superscripts to identify the variable-month 
being decomposed. The asterisk symbol (*) here denotes matrix multi
plication. Hence Ukl

ij represents the concatenated multiyear time series 
of variable i (e.g. surface temperature) during month j (e.g. May) at 
location k (a specific latitude, longitude, depth) during each year of each 

ESM/SSP combination l (e.g. calendar year 2050 from the downscaling 
run based on GFDL SSP585). To summarize: 

i = 1,...number of variables (I) 
j = 1,...number of months (J=12) 
k = 1…number of locations (K) 
l = 1...number of ESM/SSP/yearly samples (L = 510) 
n = 1...number of independent EOF modes (N = min (K,L)) 

For each ij, Xkn
ij is the mode n spatial pattern (with units of the 

original variable) capturing the covariability among different spatial 
locations k for variable i during month j, and Tnl

ij are the set of unit- 
variance, zero-mean time series modulating each of those spatial modes, 
each with one value per yearly sample. In this manner the original time 

Fig. 4. As in Fig. 3, here illustrating the areal-averaged fractional variance of the original dataset explained by each of the two leading multivariate modes.  
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series U are efficiently described using a limited number of modes X with 
amplitudes T specific to each yearly sample. 

Note that each Uij has K rows and L columns, each Xij has K rows and 
N columns, and each Tij has N rows and L (in our case, 85 × 6 = 510) 
columns. Also note that the K locations need not be the same for all 
variables, hence we can freely mix atmospheric variables on a coarse 
horizontal grid, regional variables on a fine horizontal grid, and 
boundary variables along a section. This is in fact one of the major ad
vantages of using EOF dimensional reduction as a first step in the 
multivariate analysis. A “stacked set” of the (dimensionless, unit- 
variance) time series Tij, which concatenates the rows containing the 
time modes of all of the ij entries then takes the form T(ijn)l (a matrix 
with IxJxN rows and L columns). As in H19, we apply a second 
decomposition to the multivariate set of time series T(ijn)l. Before doing 
so, we multiply each series T(ijn)l by the fractional variance Vijn of the 
original signal Uij captured by EOF mode n, and construct a scaled set 
T′

(ijn)l which includes all variables i, all months j, and all modes n 
associated with the original series (hence it has IxJxN rows and L col
umns). We decompose this new set of time series into a set of “multi
variate modes” (each with one value per variable-month-univariate 
mode ijn) and “time” modes (each with one value per ESM/SSP/year l):  

T(ijn)l’ = T(ijn)lV(ijn) = M(ijn)m*Zml                                                     (2) 

where m = 1,...number of independent multivariate modes (M = min 
(IxJxN,L)) 

Stated another way, we have performed Principal Component anal
ysis on the set of time series T(ijn)l’, to summarize the covariance across 
variables and months. The scaling by V ensures that the multivariate 
modes concentrate on those spatial patterns which describe the bulk of 

the spatiotemporal variance in the original series; as a result, only the 
top few univariate modes are likely to contribute substantially to the 
final, multivariate result. This further decomposition yields a set of 
“factor loadings” M and a set of “master” time series Z modulating those 
spatial patterns which co-vary across the different variables and months 
within a single year. In fact each set of rows Mij constitutes an additional 
rotation of each Xij into a new set of multivariate modes Xij:  

Ukl
ij = Xkn

ij*Tnl
ij = Xkn

ij*[(Mnm
ij*Zml)/Vn

ij] = (Xkn
ij*Mnm

ij/Vn
ij)*Zml =

Xkm
ij*Zml                                                                                       (3) 

and the new spatial patterns X now strongly emphasize that portion of 
the original set U which covaries across the different variables and 
months. In theory, the spatial patterns X could be substantially different 
from the original univariate patterns X, depending on how strongly any 
secondary modes of the univariate EOFs contribute to the co-variability 
among the variables. Because the Zs are mutually orthogonal, we can 
obtain the X simply by convolving U with Z through time:  

Ukl
ij*Zml

T = Xkm
ij*Zml*Zml

T = Xkm
ij                                                (4) 

It is important to note here that for a single ij the X are not themselves 
mutually orthogonal; nonetheless, eq (3) shows how X*Z still 
completely reconstructs the original data. In practice, we use only the 
top 10 of the N time modes, which captures nearly all of the variance in 
each series Uij. 

In the present context, the derived set of spatial patterns X with 
associated time amplitudes Z provide a summary of how the regional 
model plus global forcing behave - leading modes will show how 
particular variables covary and the spatial pattern of that covariance, 
and how the amplitude of those patterns changes year by year. These 
multivariate covariance patterns can further be used to approximate the 
behavior of the regional variables in U given a new set of global forcings 
F which span only a portion of the variables contained in U. For 
example, we may wish to use a limited set of atmospheric forcing vari
ables from a global model, to infer the full multivariate response of the 

Fig. 5. Upper panel: Yearly time series modulating the Mode 1 monthly spatial 
patterns of covarying change for each of the global models and socioeconomic 
pathways. Black = CESM, Red = GFDL, Green = MIROC; thin lines are SSP126, 
thick lines are SSP585. The ordinate shows the (unitless) amplitude of the 
modulating time series; the abscissa shows the calendar year (one value per 
year for each model realization). Lower panel: Power spectra of each time se
ries, showing variance (ordinate) as a function of cycles per year (abscissa). 

Fig. 6. As in Fig. 5, for Mode 2.  
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regional model subject to that atmospheric forcing. We do this by pro
jecting F onto X, to estimate the time amplitudes Yml. Because the X are 
not mutually orthogonal, we need to account for their covariance in this 
projection. For a single forcing variable i available for all months j, we 
use  

Ci
mm = Xi

(jk)m
T*Xi

(jk)m                                                                    (5)  

Ypl = Xi
(jk)p

T*Fi
(jk)l / (Ci

mp
T *Ci

mp)                                                   (6) 

where Ci
mp refers to the pth column of Ci

mm and the (jk) rows refer to all 
the month-locations where we have available data for forcing variable i. 

In the present case, based on the observed covariance structure of the 

dynamically downscaled results, we chose air temperature as our forcing 
variable Fi. A full set of spatially gridded air temperatures was obtained 
from over 40 different IPCC modeling center realizations under sce
narios SSP126 (Table 3) and SSP585 (Table 4); in some cases these 
included multiple realizations of the same model. Each global model 
realization of Fi was used to derive a modulating series Y and ultimately 
a “statistical downscaling” estimate of the resulting U, here denoted by 
U:  

Ukl
ij = Xkm

ij*Yml                                                                            (7) 

For the three dynamically downscaled models (GFDL, MIROC, 
CESM), the dynamical and statistical results (that is, Ukl

ij vs Ukl
ij) were 

Fig. 7. Covarying monthly spatial patterns of change in air temperature (Tair_frc, in deg C).  
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compared for July bottom temperatures and depth-integrated shelf Eu
phausiids, as a rough check of the method. Subsequently the method was 
used for statistical estimates of downscaled ensemble mean changes in 
these two properties between 2015 and 2100 under the two different 
emission scenarios. 

To summarize the spatial results for each variable and month, and 
the relative shifts in phenology, we spatially averaged the leading 
multivariate modal amplitudes X over six subregions of the shelf, 
following subdivisions based on the biophysical domains of the Bering 
Sea shelf. These are the same domains as are used in the results of C21. 
These subdivisions separately span the inner (0–50m), middle 
(50–100m) and outer (100–200m) shelf domains, in both southern 

(54N–60N) and northern (60N–64N) regions. For each of the variables, 
the spatial averages for each subdomain are then displayed on the same 
graph as a function of month. 

We further calculate the average fractional variance explained by the 
leading multivariate mode for each variable and month, where the 
average is taken over the full domain used in calculating the monthly 
anomalies (and the subsequent univariate EOFs). We also calculate the 
frequency spectra of the “master” time series Z, doing this separately for 
each of the downscaled realizations that were used in the concatenated 
anomaly series. 

Fig. 8. Covarying monthly spatial patterns of change in air pressure (Pair_frc, in Pa).  
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3. Results 

An examination of the full matrix M revealed that only the leading 
univariate EOFs, modulated by the scaled set T′, made a significant 
contribution to the leading multivariate mode, or to any of the lesser 
multivariate modes. In the following we focus on the leading multivar
iate spatial modes, how they covary across different variables and 
months. Since in our case only the leading univariate modes were sig
nificant contributors to the multivariate mode, the univariate and 
multivariate spatial patterns are in fact similar, but with different overall 
amplitudes. 

3.1. Dominant pattern of covariance across variables and months 

A summary map of the “factor loadings” for each variable during 
each month is shown in Fig. 3 (this is essentially that portion of the 
matrix M corresponding to the leading univariate modes). Since spatial 
modes X from univariate EOF analysis can have both positive and 
negative values depending on location, for clarity we flipped the signs of 
the univariate spatial patterns X (and their corresponding time series T) 
to be spatially-averaged positive prior to calculating M. For example, in 
Fig. 3, a positive value for temperature and a negative value for nitrate 
indicates that the (spatially averaged positive) univariate EOF for tem
perature was positively covariant with the multivariate mode, and the 

Fig. 9. Covarying monthly spatial patterns of change in rainfall (rain_frc, in m s− 2).  
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(spatially averaged positive) univariate EOF for nitrate was negatively 
covariant with that multivariate mode. The detailed spatial patterns of 
the primary multivariate mode, obtained through the convolution 
shown in eq (6), will be displayed in subsequent figures. 

Fig. 3 indicates a strong connection among the monthly anomalies of 
certain variables and months; in this figure, correlated darker colors 
indicate that the particular spatial patterns of anomalies for those 
variable-months (which may in fact be very different for each variable- 
month) tend to occur together in our yearly samples. In particular, for 

the first mode it is observed that warmer air temperatures, absolute 
humidity, downward longwave radiation, and ocean temperatures (both 
top and bottom) are strongly linked with reduced ice area, ice thickness 
and salinity. Among the biological variables linked with these physical 
changes are a drop in nitrate and a shift in the phenology to earlier 
blooms and earlier decay of phytoplankton and zooplankton. A shift is 
indicated by increased amplitude of the spatial pattern earlier in the 
year and decreased amplitude of the spatial pattern later in the year. 
This phenological shift is arrayed “trophically” in the figure, with an 

Fig. 10. Covarying monthly spatial patterns of change in ocean surface temperature (temp_surface5m, in deg C). Light red shading indicates regional model domain. 
For ocean surface, bottom, and depth-integrated variables, the statistical analysis is restricted to output from the Bering Sea continental shelf (depth 0–200m). 
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earlier shift in phytoplankton, later shifts in zooplankton, and the latest 
shift in jellyfish. In addition, by the fall, lower mean values of large 
copepods are consistently associated with the spatially-averaged 
warmer temperatures. 

The spatially averaged fractional variance of the original, full time 
series explained by the leading two multivariate modes is shown in 
Fig. 4. Note the strong similarity of this plot to the modal amplitudes of 
Fig. 3. 

The leading multivariate mode time series Z modulating the leading 
mode factor pattern is shown in Fig. 5, here broken apart into the 

original six downscaling simulations that were used to construct the 
concatenated series of yearly samples. This figure indicates how the 
amplitude of the shared multivariate pattern changes over the 21st 
century in each dynamically downscaled realization. For each of the 
three global models, the SSP585 run exhibits a larger difference between 
the beginning and end of the simulated period than the SSP126 run of 
that model. Co-varying patterns of change are larger (on average, 
approximately 4x greater) under SSP585 than under SSP126 near the 
end of the 21st century (~2080–2100). For the SSP585 runs especially, 
there is a low-frequency trend (associated with warming, as detailed 

Fig. 11. Covarying monthly spatial patterns of change in ocean bottom temperature (temp_bottom5m, in deg C).  
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below), as well as strong decadal and interannual variability throughout 
the 21st century. More specifically, the time series of this leading mode 
for SSP585 have "red" spectra, with secondary peaks at decadal-to- 
interannual scales. 

The second multivariate mode amplitudes are focused on biological 
changes in the winter, apparently uncorrelated with physical changes or 
forcing terms (Fig. 3). While the time series associated with this mode 
have far whiter spectra than the leading mode, the GFDL results stand 
out, with large secondary peaks in the 5–10 year range (Fig. 6). 

3.2. Spatial modes by variable and month 

We now examine monthly spatial patterns associated with the 
leading multivariate mode, focusing especially (but not exclusively) on 
those which load most strongly on that leading multivariate mode. A full 
set of these leading multivariate spatial patterns is included in Appendix, 
arranged in the same order as Table 2 and Fig. 3. Generally speaking, 
given the modulating time series in Fig. 5, when we refer to a “positive” 
pattern, it indicates the pattern of change between the start and end of 
the 21st century projections. The actual yearly time series of the 

Fig. 12. Covarying monthly spatial patterns of change in areal ice cover (aice_30, in fractional area).  
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covarying change, relative to the full 21st century climatology of a 
particular downscaling simulation, is in fact this pattern multiplied by 
the values of the modulating time series shown in Fig. 5. 

3.2.1. Atmospheric variables 
The spatial pattern of air temperature is positive, concentrated in 

Dec–Mar, and focused on the northern Bering Sea (Fig. 7). A similar 
spatial pattern is observed for downward longwave radiation (see Ap
pendix). Spatially broad positive covarying changes in absolute 

humidity are strongest in the summer months (see Appendix). The 
spatial pattern for shortwave radiation changes from negative (less 
incident shortwave radiation) in spring to positive (more incident 
shortwave radiation) in summer (see Appendix), and like air tempera
ture, tends to be focused on the northern Bering Sea. Presumably this 
derives in part from increased cloud cover in the ESM results, which is 
associated with both reduced downward shortwave and increased 
downward longwave radiation at the ocean surface; more analysis 
would be needed to quantify the relative contributions of cloud cover vs 

Fig. 13. Covarying monthly spatial patterns of change in ocean surface nitrate (NO3_surface5m, in mmol N m− 3).  

A.J. Hermann et al.                                                                                                                                                                                                                            



Deep-Sea Research Part II 194 (2021) 104974

17

temperature to the longwave total. Air pressure and wind changes are 
concentrated in the winter months, and indicate a tendency towards 
northeastward wind stress in the future (Fig. 8). The precipitation 
pattern is weakest in May–June, and shows enhanced winter precipita
tion in the Gulf of Alaska (Fig. 9). 

3.2.2. Regional ocean variables 
Among the physical variables, the ocean surface temperature pattern 

(Fig. 10) is positive and strongest offshore during winter, but strongest at 

mid-shelf in summer. The bottom temperature pattern (Fig. 11), simi
larly positive, is concentrated at mid-shelf throughout the year. The 
pattern for areal ice cover (Fig. 12), always negative, is strongest during 
the winter, and focused on the northern Bering Sea. 

Among the biological variables, nitrate is strongly covariant 
throughout the year (Fig. 3), with lowest values in May (Fig. 13). Small 
surface phytoplankton have a positive pattern in May (focused in Norton 
Sound) and negative patterns thereafter which gradually shift from the 
inner to the middle shelf during Jun–Oct (Fig. 14). Integrated shelf 

Fig. 14. Covarying monthly spatial patterns of change in ocean surface small phytoplankton (PhS_surface5m, in mg C m− 3).  
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euphausiids exhibit a positive pattern on the outer shelf in April which 
shifts onshore through June; during July–Dec the pattern is negative 
(Fig. 15). 

Subdomain-averaged summaries of the full set of variables is plotted 
in Figs. 16–18, for the forcing and boundary conditions (Fig. 16), the 
regional physical variables (Fig. 17) and the regional biological vari
ables (Fig. 18). The pattern of freshening for salinity is strongly focused 
on Norton Sound (see Appendix) and strongest during Dec–May 
(Fig. 17). A tendency towards greater surface “cross-shelf” and “along- 
shelf” velocities is evident in the winter months (Fig. 17), corresponding 

to the period of greatest change in air pressure and winds (Fig. 16). As 
noted in the methods, “cross-shelf” and “along-shelf” are here approxi
mated by the native coordinate system of the ROMS model shown in 
Fig. 1, which runs roughly southwest to northeast and southeast to 
northwest, respectively. Hence positive “cross-shelf” flow indicates flow 
towards the northeast, and positive “along-shelf” flow indicates flow 
towards the northwest. The large surface phytoplankton exhibit both 
positive and negative areas during April and May (see Appendix), and 
are dominated by a negative pattern which shifts inshore during Jun–Jul 
(Fig. 18). Surface microzooplankton exhibit a positive pattern in the 

Fig. 15. Covarying monthly spatial patterns of change in depth-integrated on-shelf euphausiids (EupS_integrated, in mg C m− 2).  
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southeast in April, which shifts north in May–June (Fig. 18). The pattern 
in June is positive nearshore and negative at mid-shelf, and is generally 
weaker thereafter. Surface copepods exhibit a similar pattern to surface 
microzooplankton, but with stronger negative patterns in July–Dec 
(Fig. 18). Integrated jellyfish exhibit a positive pattern at the shelf break 
in May–Jun which shifts onshore during July–Aug, and a negative 
pattern focused at the shelf break during Oct–March (Fig. 18). 

3.3. Statistical projection of regional model behavior using multivariate 
modes 

As in H19, these multivariate modes can be used to project the 
approximate behavior of the regional model under a broad suite of 
global ESM forcing. As with CMIP5, it was found that a few of the forcing 
variables - and air temperature over the Bering Sea in particular - should 
exert a large influence on these projections. Once obtained, this larger 
ensemble may be useful in Management Strategy Evaluations (Punt 
et al., 2016), where a large ensemble of realizations is desirable to 

properly capture uncertainty (Hollowed et al., 2020). 
In Fig. 19, we take air temperatures by month from the three models 

used in dynamical downscaling, and project them onto the multivariate 
modes as in eqs (6) and (7) to obtain estimates of July bottom temper
atures. These are compared with the original, dynamically downscaled 
results. Essentially we are examining here how much of the mean change 
and spatial pattern we can replicate using our statistical approach, based 
on those few downscaled runs. Specifically we look at the 30-year mean 
pattern change from 2014-2044 to 2070–2099. Warming exceeds 1 
degree C in all areas; for two of three dynamically downscaled models, 
the greatest change is focused on the outer northern shelf. The patterns 
are strikingly similar between dynamical and statistical methods for the 
MIROC model, and highly similar for the CESM model as well. The GFDL 
model exhibits the greatest difference between methods, but nonetheless 
includes warming of the outer northern shelf under both methods. 

In Fig. 20, we present the full results of the statistical downscaling for 
July bottom temperatures on the shelf, using a broad array of over 40 
global models under emission scenarios SSP126 and SSP585. As in 

Fig. 16. Areal averages of the leading multivariate mode spatial patterns, taken over subdomains of the continental shelf by month (abcissa), for atmospheric forcing 
and ocean boundary conditions. See Fig. 1 for spatial domains and Table 2 for units. For the atmospheric forcing, domains plotted are for the inner (red), middle 
(green) and outer (blue) shelf, in the southern (solid) and northern (dashed) regions. For the boundary conditions, a line average of southeastern (solid) and 
northwestern (dashed) results are shown. Full maps of each variable are provided in the Appendix. 
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Fig. 19, we exhibit the 30-year mean pattern change from 2014-2044 to 
2070–2099, and find that the ensemble mean pattern is strongest on the 
northern outer shelf. Warming in parts of this area exceeds 5 degrees C 
under SSP585. We further show the annual time series of monthly 
average July shelf bottom temperatures under each of these emission 
scenarios. Note how the ensemble mean rise in temperature is ~4 de
grees C under the low carbon mitigation (i.e. high emission) scenario 
(SSP585), as compared with ~1 degrees C under the high carbon miti
gation (i.e. low emission) scenario (SSP126). A companion set of figures 
for July depth-integrated Euphausiids (Figs. 21 and 22) projects stron
gest declines on the outer shelf, in excess of 75 gC m− 2. As with bottom 
temperatures, the largest discrepancies between the dynamical vs sta
tistical method are observed for the GFDL case. The ensemble mean 
decrease is ~50 gC m− 2 under SSP585, as compared with ~12 gC m− 2 

under SSP126. One key feature of these ensemble means is that bottom 
temperatures and zooplankton both stabilize at new equilibria after 
2060 under SSP126, whereas this does not occur in the next 85 years 
under SSP585. 

4. Discussion 

4.1. Interpreting the patterns 

Some of the most striking patterns revealed by this analysis are: 1) a 
strong correlation of many regional biophysical properties with the 
forcing temperature, absolute humidity and downward longwave radi
ation; 2) reduced nitrate is associated with warming throughout the 
year; 3) warming drives a phenological shift in plankton, with time 
lagged effects from phytoplankton to zooplankton to jellyfish; 4) 
warming leads to reduced values of large zooplankton in the late sum
mer and fall. Several of these patterns were found in the multivariate 
analysis of downscaled CMIP5 results in H19, which were based on 
annual averages over the entire eastern Bering Sea, and used an earlier 
version of the NPZ model. The present work, as it includes patterns by 
month, reveals the phenological detail of these changes and clarifies 
how they shift through time across the shelf. Several of the emergent 
patterns are similar to the changes in univariate monthly climatologies 

between 1980-2014 and 2066–2100, described in C21. However, as 
demonstrated in Fig. 4, the covariant patterns apply not just to the 
gradual multidecadal trends, but to the interannual variability as well. 
We consider each of these patterns as follows: 

1) Among the physical variables, as expected, there is a strong associ
ation between air temperature and ice. The association with winds is 
weaker; however, the spatial patterns are consistent with more 
northward (i.e. southerly) winds being associated with reduced ice 
cover. Under present-day conditions, winds play a substantial role in 
the penetration of ice to the southeastern Bering Sea (Cokelet, 2016). 
The strong correlation between ice and salinity patterns in Norton 
Sound (less salt with less ice) may be due to reduced brine rejection 
under warming, as well as the increased rainfall and Yukon River 
runoff. In addition, there is enhanced salinity on the other shelf in 
May–June (Fig. 11), consistent with the argument in C21 that a 
reduction in ice leads to a reduction in surface freshening by ice melt.  

2) The association of reduced surface nitrate with warming conditions 
could be due to several factors. Potentially this is due to changes in 
stratification of the water column as discussed in C21. The bottom 
and boundary nitrate values decline as well; this tendency conforms 
to that of the ESMs themselves, as shown in C21.  

3) The time-lagged shifts in phenology naturally correspond to the links 
in the food chain, with sequential blooms in phytoplankton, then 
smaller zooplankton, larger zooplankton, and finally jellyfish. 
Several of these phenological shifts are noted in the univariate ana
lyses of C21. Kearney et al. (2020) has detailed the phenology of 
phytoplankton in the hindcast version of the K20 model used here 
and found a late May peak in phytoplankton biomass; our results 
here suggest that peak will shift to earlier by 2–4 weeks to late April 
or early May. The simplest explanation of the phenological shift in 
phytoplankton is that higher temperatures tend to advance the onset 
of net primary production to yield blooms earlier in the year. There 
may also be a substantial effect of sea ice loss, which increases solar 
radiation to the water column, even as it reduces the near-surface 
stratification associated with ice melt (but note our covarying pat
terns suggest a net surface freshening in the north under warming, 

Fig. 17. Areal averages of the leading multivariate spatial modes for the regional model physical variables, by subdomain and month (abcissa). See Fig. 1 for spatial 
domains and Table 2 for units. Domains plotted are for the inner (red), middle (green) and outer (blue) shelf, in the southern (solid) and northern (dashed) regions. 
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likely due to reduced brine rejection in the winter by 
southward-advecting ice). The earlier zooplankton and jellyfish 
blooms may simply be following the earlier phytoplankton bloom, 
but are themselves subject to direct temperature impacts on growth 
rates. It is hence likely that both effects contribute to their pheno
logical shifts.  

4) In addition to reduced nitrate and primary production, the direct 
temperature dependence of zooplankton respiration and grazing 
closure terms may account for the lower overall biomass of large 
zooplankton in the fall under warming. This decline in fall 
zooplankton, similarly observed in the previous modeling results of 
H13 and H19, may impact fish which depend on that food source 
prior to overwintering (Sigler et al., 2016; Duffy-Anderson et al., 
2017), with strong implications for management (Holsman et al., 
2020). 

In some ways these patterns conform to the findings of H19, which 
were based on annual rather than monthly averages. In particular, the 
strong association between air temperature, ice cover, and oceanic 

bottom temperature has been retained, with winds playing a secondary 
role. Whereas H19 predicted largest anticipated annual bottom tem
perature changes on the northern shelf, our new results suggest that for 
most months, the largest changes will be seen farther south. Both H19 
and the new results predict an overall loss of nutrients, phytoplankton, 
and large crustacean zooplankton; the new results identify the season
ality (phenology) of these anticipated changes. 

4.2. Secondary multivariate modes 

The second multivariate mode explained far less variance of the 
original dataset than the first multivariate mode (Fig. 4) and strongly 
emphasized phenological changes in the winter months, e.g. a January 
increase in phytoplankton associated with February increases in 
zooplankton and a March increase in jellyfish. Increased surface and 
bottom nitrate and ammonium (as opposed to their decrease in mode 1) 
were covariant in mode 2, as well as, to a lesser degree, surface and 
bottom temperature of the regional model. Unlike mode 1, there was 
little contribution of any of the ESM physical variables to mode 2. 

Fig. 18. Areal averages of the leading multivariate spatial modes for the regional model biological variables, by subdomain and month (abcissa). See Fig. 1 for spatial 
domains and Table 2 for units. Domains plotted are for the inner (red), middle (green) and outer (blue) shelf, in the southern (solid) and northern (dashed) regions. 
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Together these results imply this mode is primarily capturing initial 
adjustment and subsequent internal variability of the GFDL-forced 
regional model, unconnected with the interannual variability of the 
global atmospheric or oceanic forcing. While this mode is apparently not 
as useful as the leading mode for estimating the regional response to 
alternate global forcing, it provides an example of how the multivariate 
method is able to ferret out unique (here, almost purely biological) as
pects and consequences of a particular forcing set. 

4.3. Alternate methods 

A broad overview of regional downscaling methods for earth system 
models can be found in Drenkard et al. (2021). Here, we focus on a few 
issues relevant to the specific methods used in our study. 

For the dynamical downscaling, we used the global forcing and 
boundary conditions without bias correction. Various “delta” methods 
have been utilized in downscaling, which entail the addition of yearly 
and/or monthly changes from a coarse-scale ESM to an existing fine- 
scale climatology. While this approach has considerable merit in 
retaining fine-scale forcing gradients (e.g. in winds), it can obscure 

Fig. 19. Comparison of dynamically downscaled results from single global models with their “hybrid” statistical equivalent, derived using only air temperature from 
the global model. Shown are the projected change in 30-year average July bottom temperatures (degrees C), between 2015-2044 and 2070–2099, under SSP585. 
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subtle shifts in the phenology or high-frequency statistics of the global 
model output (e.g. more frequent storms, leading to greater mixing). 
Here, as with H19, we chose to use the uncorrected global forcing, and 
instead focus on the changes in the regional response over time (itself an 
alternate “delta” method). 

It could be argued that our use of monthly time series, taken together 
year by year, artificially limits our focus to covariance within a single 
calendar year, hence excluding covariance of, say, bottom temperature 
in fall from bottom temperature in the subsequent spring. We explored 
this possibility using a collection of 24 months instead of 12, and found 
no substantial difference in the monthly patterns. 

It could further be argued that stronger correlations between forcing 
and response can be found using single variable pairs, e.g. air temper
ature and bottom temperature, and subsequently used for regional 
projections. This is certainly true, but could potentially result in 
dynamically inconsistent projections of the system, such as temperature 
and salinity fields out of balance with velocities. In addition, the 
covariant patterns account for significant co-linearity of forcing terms 
(air temperature, absolute humidity) and more clearly suggest mecha
nisms which entail multiple variables lagged in time (air temperature, 
ice, salinity, plankton). Indeed, the mechanisms suggested could be 
fruitfully explored by expanding our analysis to include heat and 
biomass flux variables from the regional model. 

In this study we derived the multivariate modes using a concatenated 
series of monthly anomalies derived separately from each downscaling 
realization. A related approach would be to derive multiviate modes 
separately for each realization (or each ESM), followed by averaging 
across realizations. We have not yet tested this alternative, which could 
more fully identify unique modes of covariability from different forc
ings. However, it is noteworthy that at least one of our modes (the 
second) was primarily associated with a particular ESM, and that our 
chosen method was able to extract that association out of the full, 
concatenated series. 

Alternate possible methods to achieve a compact summary of 

regional model behavior include a modified use of Linear Inverse 
Modeling, which has been used for seasonal predictions (e.g. Newman 
et al., 2003; Alexander et al., 2008; Capatondi and Sardeshmukh, 2015), 
and the use of Machine Learning to relate the forcing to the response, 
trained on the existing set of dynamically downscaled output. These 
both typically entail dimensional reduction of the type used here, that is, 
univariate EOF decomposition as a first step. We are presently exploring 
these alternate methods. The appeal of pure EOF decomposition - 
including the variant used in this study - lies in its ability to reconstruct 
the entire dataset using a set of fully orthogonal modes. In some cir
cumstances this requirement for orthogonality is considered a liability, 
especially as the modes, derived from mathematical decomposition, can 
lack any “true” physical meaning (Dommenget and Latif, 2002). Their 
virtue lies in their ability to summarize covariance among a large 
collection of properties, as opposed to looking at one-by-one correla
tions among all pairs of samples. In our ecosystems context, this helps to 
ferret out emergent properties involving many state variables. Machine 
Learning methods may ultimately do better at relating multivariate, 
spatially distributed series to one another (e.g. predicting one set of 
series from a different set), but may be harder to interpret 
mechanistically. 

4.4. Known issues of the models 

While the present regional model corrects several deficiencies of the 
previous version, some known issues remain. 1) A known feature of the 
present code (and the H16 version) is an exaggerated acceleration of 
primary production with temperature; it is not presently known how 
large of an impact this has on the results. 2) The boundary conditions 
presently used for plankton (radiation plus nudging to seed values), 
while presumed adequate for phytoplankton (given their rapid turn
over), may distort zooplankton fields near the boundaries, as they take 
longer to come into balance with the ambient nutrients. More generally, 
it is challenging to map plankton functional groups from the global ESMs 

Fig. 20. Upper panels: ensemble average of projected change in 30-year average July bottom temperatures (degrees C) between 2015-2044 and 2070–2099, under 
SSP126 (left) and SSP585 (right). Bottom panels: time series of spatially averaged July mean bottom temperatures, relative to the 2015–2044 average of each 
statistically downscaled model under SSP126 (left) and SSP585 (right). Thick lines indicate ensemble average for each SSP. 
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onto their regional equivalent - as different categories are used in each 
model. 

The CMIP6 ESMs used for this study had significant improvements 
over CMIP5, described in C21 and Eyring et al. (2016). Nonetheless, 
certain deviations from observed present-day aspects of the Bering Sea 
were observed in the historical CMIP6 output. In particular, the MIROC 
model exhibited substantial offshore winds and corresponding offshore 
surface flows during much of the year in both historical and projection 
runs; these were unrealistically large and persistent relative to observed 
climatology. This underscores the need to focus on changes in projected 
results over the 21st century in these simulations, rather than absolute 
values. Stated another way: to the extent that averaged dynamics are 

quasi-linear, projected changes are less biased than the specific variable 
values at some present or future date. This is of course less true when 
many processes are very nonlinear; in that case, if values are biased, 
changes to those values are more likely to be biased as well. 

5. Conclusions 

Based on air temperatures from a broad 40-member ensemble of 
global models, the anticipated coupled biophysical change in the Bering 
Sea is approximately 4x greater under SSP585 than under SSP126; for 
example, a mean covariant rise in July bottom temperatures of 4 degrees 
C under SSP585, as compared to 1 degree C under SSP126, and a mean 

Fig. 21. As in Fig. 19, for July depth-integrated shelf Euphausiids (EupS, mg C m− 2).  
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covariant decrease in July depth-integrated shelf Euphausiids of ~50 gC 
m− 2 under SSP585, as compared to ~12 gC m− 2 under SSP126. These 
two features both stabilize at new equilibria after 2060 under SSP126, 
whereas this does not occur by 2100 under SSP585. This multivariate 
analysis of dynamically downscaled results for the Bering Sea indicates 
that, at a systems level, rising air and ocean temperatures from the 
global models are strongly coupled with rising regional temperatures 
and reduced ice cover/thickness in the Bering Sea, as well as strong 
changes to the phenology of its plankton food chain (earlier blooms), 
and reduced biomass of large zooplankton in the late summer through 
fall. These findings support interpretations based on individual vari
ables, but emphasize how particular components of the system co-vary 
through time on interannual through interdecadal time scales. The 
hybrid dynamical-statistical method used here provides a compact way 
to estimate the changes to many regional attributes under a variety of 
global change scenarios, and hence may be useful for future studies 
exploring the implications of projected changes on Bering Sea ecological 
and social systems under those scenarios. 
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